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ABSTRACT—Stephanie C. Herring, Nikolaos Christidi, Andrew Hoell, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This sixth edition of explaining extreme events of the 
previous year (2016) from a climate perspective is the 
first of these reports to find that some extreme events 
were not possible in a preindustrial climate. The events 
were the 2016 record global heat, the heat across Asia, 
as well as a marine heat wave off the coast of Alaska. 
While these results are novel, they were not unexpected. 
Climate attribution scientists have been predicting that 
eventually the influence of human-caused climate change 
would become sufficiently strong as to push events 
beyond the bounds of natural variability alone. It was also 
predicted that we would first observe this phenomenon 
for heat events where the climate change influence is most 
pronounced. Additional retrospective analysis will reveal 
if, in fact, these are the first events of their kind or were 
simply some of the first to be discovered.

Last year, the editors emphasized the need for ad-
ditional papers in the area of “impacts attribution” that 
investigate whether climate change’s influence on the 
extreme event can subsequently be directly tied to a 
change in risk of the socio-economic or environmental 
impacts. Several papers in this year’s report address this 
challenge, including Great Barrier Reef bleaching, living 
marine resources in the Pacific, and ecosystem productiv-
ity on the Iberian Peninsula. This is an increase over the 
number of impact attribution papers than in the past, and 
are hopefully a sign that research in this area will continue 
to expand in the future.

Other extreme weather event types in this year’s 
edition include ocean heat waves, forest fires, snow 
storms, and frost, as well as heavy precipitation, drought, 
and extreme heat and cold events over land. There were 

a number of marine heat waves examined in this year’s 
report, and all but one found a role for climate change 
in increasing the severity of the events. While human-
caused climate change caused China’s cold winter to be 
less likely, it did not influence U.S. storm Jonas which hit 
the mid-Atlantic in winter 2016.

As in past years, the papers submitted to this report 
are selected prior to knowing the f inal results of 
whether human-caused climate change influenced the 
event. The editors have and will continue to support the 
publication of papers that find no role for human-caused 
climate change because of their scientific value in both 
assessing attribution methodologies and in enhancing 
our understanding of how climate change is, and is not, 
impacting extremes. In this report, twenty-one of the 
twenty-seven papers in this edition identified climate 
change as a significant driver of an event, while six did 
not. Of the 131 papers now examined in this report over 
the last six years, approximately 65% have identified a 
role for climate change, while about 35% have not found 
an appreciable effect.  

Looking ahead, we hope to continue to see improve-
ments in how we assess the influence of human-induced 
climate change on extremes and the continued inclusion 
of stakeholder needs to inform the growth of the field and 
how the results can be applied in decision making. While 
it represents a considerable challenge to provide robust 
results that are clearly communicated for stakeholders 
to use as part of their decision-making processes, these 
annual reports are increasingly showing their potential 
to help meet such growing needs.
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4. THE EXTREME 2015/16 EL NIÑO, IN THE CONTEXT OF 
HISTORICAL CLIMATE VARIABILITY AND CHANGE 

Matthew NewMaN, aNdrew t. witteNberg, LiNyiN CheNg,  
giLbert P. CoMPo, aNd CatheriNe a. SMith

Record warm central equatorial Pacific Ocean temperatures during the 2015/16 El Niño  
appear to partly reflect an anthropogenically forced trend. Whether they reflect changes in  

El Niño variability remains uncertain.

Introduction. Recent studies have investigated whether 
both the amplitude and key characteristics of El 
Niño–Southern Oscillation (ENSO) events have 
been changing, potentially due to some natural 
and/or anthropogenic change in the tropical Pacific 
Ocean state during recent decades (e.g., Yeh et al. 
2009; Lee and McPhaden 2010; Newman et al. 2011; 
McGregor et al. 2013). If so, when might this change 
be identifiable in individual ENSO events? Was the 
extreme warmth in the equatorial Pacific seen in the 
recent 2015/16 El Niño, particularly near the dateline 
(L’Heureux et al. 2017), a harbinger of this change? 
To address these questions, we assess this event using 
statistics of Niño3 (5°N–5°S, 150°–90°W) and Niño4 
(5°N–5°S, 160°E–150°W) sea surface temperature 
(SST) indices, derived from observational datasets 
and coupled general circulation model simulations. 
We use two indices to capture differences between 
events, important to both forecasts and diagnosis of 
ENSO and its impacts (Compo and Sardeshmukh 
2010; Capotondi et al. 2015).

How extreme was the 2015/16 El Niño? We compare the 
December 2015 (DEC2015) equatorial SST anomaly 
(SSTA) to the SSTA distribution during 1891–2000, to 
more stringently test against potentially recent non-
stationarity. (Other winter months yielded similar 
results.) Figure 4.1 shows histograms of monthly 
ERSST.v5 Niño3 and Niño4 indices, compared with 
two different probability distribution functions 
(PDFs) determined not by fitting the histogram, but 

by fitting two different Markov processes to each 
index time series: an AR1 process (or red noise; e.g., 
Frankignoul and Hasselmann 1977) with a memory 
time scale on the order of several months, yielding a 
Gaussian (normal) distribution; and a “stochastically 
generated skewed” process (SGS; Sardeshmukh et al. 
2015), similar to the AR1 process but with noise that 
is asymmetric and depends linearly on the SSTA, 
yielding a non-Gaussian (skewed and heavy-tailed) 
distribution. Confidence intervals for these PDFs 
are determined from large ensembles of 110-year 
realizations generated by each process. (See online 
supplement for details.) 

The SGS distribution captures the significant 
positive skewness of the Niño3 PDF (Fig. 4.1a). The 
observed tail probability (the probability of Niño3 
reaching its observed DEC2015 magnitude) is un-
derestimated by the Gaussian AR1 PDF, but not by 
the skewed SGS PDF. This result is insensitive to the 
dataset or to removing the 1891–2015 linear trend. 
Overall, the SGS distributions suggest that the prob-
ability of a monthly Niño3 value reaching or exceed-
ing the DEC2015 magnitude is about 0.5%, consistent 
with previous occurrences of strong El Niño events 
in the observational record.

Results are quite different for Niño4, where weak 
negative skewness (Fig. 4.1b) means that the Gaussian 
distribution overestimates the DEC2015 tail prob-
ability. The DEC2015 Niño4 value was unprecedented 
in all five datasets, apparently impacted by a secular 
warming trend. Relative to its linear trend, however, 
the ERSST.v5 dataset had higher Niño4 values earlier 
in the record.

How likely was the 2015/16 El Niño? We next evalu-
ate the likelihood and severity of the 2015/16 event 
relative to the gradually warming background by 
applying the generalized extreme value (GEV) dis-
tribution (e.g., Coles 2001; Ferreira and de Haan 

AFFILIATIONS: NewMaN, CheNg, CoMPo, aNd SMith—CIRES, 
University of Colorado, Boulder, and NOAA Earth Systems 
Research Laboratory, Physical Sciences Division, Boulder, 
Colorado; witteNberg—NOAA Geophysical Fluid Dynamics 
Laboratory, Princeton, New Jersey

DOI:10.1175/BAMS-D-17-0116.1

A supplement to this article is available online (10.1175 
/BAMS-D-17-0116.2)
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2015) to the historical annual maximum of linearly 
detrended monthly Niño3 and Niño4 indices during 
1891–2000. [See online supplement for our Bayesian 
analysis (Cheng et al. 2014).] The return period, or (re)
occurrence probability of an El Niño event with the 
observed 2015/16 intensity (a “2015/16-level” event), 
is derived for both indices from each dataset. The 
same assessment is repeated with the SGS ensembles 
discussed above. 

Our analysis suggests that a 2015/16-level event 
could be expected for Niño3 roughly once every 40 
years. This median return period is reasonably robust 
to the observational or synthetic SGS dataset used. 
However, the uncertainty estimates for the return 
period, and thus the likelihood of the 2015/16 event, 
are less robust. Both ERSST datasets showed the 
least uncertainty and shortest return periods, with 
a 2015/16-level Niño3 SSTA occurring every 5 to 50 
years, while COBE2 showed the greatest uncertainty 
with a range of 10 to 120 years. The SGS distributions, 
which have more extreme tail events, reduced the 
return period uncertainty for the ERSST and Had-

ISST.v1 datasets and suggested a greater likelihood 
of 2015/16-level SSTA extremes.

For Niño4, there is much less agreement among 
the datasets (Fig. 4.1d), with the return period of a 
2015/16-level event lowest for the ERSST datasets. 
For those datasets where the 2015/16 Niño4 SSTA was 
unprecedented, the return period cannot be derived 
using the GEV approach. From ERSST.v5, however, 
such an event could occur one year in ten.

Was the 2015/16 El Niño impacted by multidecadal 
trends in equatorial Pacif ic SST or ENSO variability? 
Figure 4.2 illustrates the evolution of 30-year mean 
SST and 30-year ENSO amplitude over the past 160 
years, for two observational reconstructions and two 
model simulations. For simplicity we discuss only the 
HadISST.v1.1 and ERSST.v5 reconstructions, which 
generally bound the behavior of the other products 
we examined (HadISST.v2, ERSST.v3b, ERSST.v4, 
COBE, COBE.v2, Kaplan.v2, SODA-si.v3).

For both Niño3 and Niño4, the 1987–2016 epoch 
was observed to be either the warmest or the second 

Fig. 4.1. Estimations of DEC2015 (a) Niño3 and (b) Niño4 upper tail probabilities (%). For each SST reconstruc-
tion, bars show the scalar tail probability empirically derived from the dataset and also its median value from 
AR1 and SGS distributions; ranges are shown by the whiskers. Insets compare SGS and AR1 PDFs with data 
histograms, using ERSST.v5 values standardized with respect to 1891–2000 (other datasets yielded similar 
results). Corresponding 95% confidence intervals are shaded; DEC2015 amplitudes are indicated by arrows, 
where the linear trend is (gray) or is not (black) first removed. Return period estimation (years) of linearly 
detrended 2015/16 (c) Niño3 and (d) Niño4 indices using the annual maximum of monthly SSTs. For each SST 
reconstruction, the bars show the 110-year sampling distribution of the return period matching the observed 
2015/16 standardized values (magenta numbers), with ranges shown by the whiskers. N/A indicates return 
periods not derivable using the GEV technique (see text).
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warmest 30-year epoch on record, depending on the 
observational dataset. The warming trend is clearest 
after 1970 and in Niño4. It is more pronounced in 
ERSST.v5 than HadISST.v1.1. The centennial warm-
ing of both indices is marginally within the bounds of 
what could be expected from intrinsic multidecadal 
variations for HadISST.v1.1, but is outside the bounds 
for ERSST.v5, relative to a statistically stationary 
multivariate AR1 process [a linear inverse model 
(LIM), constructed from detrended observed tropi-
cal SSTAs during 1959–2000; see online supplement 
and Newman et al. 2011]. This is consistent with 
earlier analysis (Solomon and Newman 2012) find-
ing equatorial Pacific 1900–2010 warming trends to 
be significant near and west of the dateline, despite 
uncertainty in amplitude.

Robust equatorial Pacific warming from 1920–49 
to 1987–2016 is evident in ensemble simulations 

from the NCAR CESM-LE and GFDL FLOR-FA 
global coupled GCMs driven by historical natural 
and anthropogenic (“ALL”) forcings (Figs. 4.2c,d,g,h). 
CESM-LE’s warming is compatible with all the recon-
structions, though most of its members warm more 
than HadISST.v1.1 and less than ERSST.v5. FLOR-FA’s 
warming is strong enough to be detected with any 
pair of 30-year means drawn randomly from each 
epoch. It is marginally compatible with ERSST.v5 
but not with HadISST.v1.1. The FLOR-FA ensemble 
simulation with only natural (solar and volcanic, 
“NAT”) forcings shows ensemble-mean cooling from 
1920–49 to 1987–2016, so the FLOR-FA ALL warming 
must be entirely anthropogenic.

 Compared to the historical changes in 30-year 
mean SST, there is less observational consensus 
about changes in ENSO SSTA variance. In Niño4, 
HadISST.v1.1 shows a fairly monotonic 40% amplifi-

Fig. 4.2. Statistics for annually smoothed SSTs averaged over (a)–(d) Niño4 and (e)–(h) Niño3. Y-axis is the 
30-year mean (μ, °C departure from 1987–2016); x-axis is the 30-year std dev (σ, % departure from 1987–2016). 
(a),(b),(e),(f) sample the observationally reconstructed 30-year statistics every 5 years (colored dots). Gray 
dots show analogous statistics from 8000-year LIM simulations trained using detrended 1959–2000 data from 
HadISST.v1.1 or ERSST.v5. (c),(g) show the CESM-LE 30-member ensemble simulation with “ALL” (anthro-
pogenic + natural) historical forcings, for 1987–2016 (red dots) and 1920–49 (green squares) relative to the 
1987–2016 ensemble mean; inset indicates ALL ensemble [minimum, average, maximum] change in μ and σ 
from 1920–49 to 1987–2016. (d),(h) show analogous statistics for the FLOR-FA 30-member ALL ensemble, 
along with a 30-member “NAT” ensemble with natural forcings only for 1920–49 (gray crosses) and 1987–2016 
(yellow diamonds), also relative to the ALL ensemble mean.
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

 Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to  
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy 
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled  
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on  
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface  
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric 
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor  
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral  

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem 
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual  
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude)                    El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to 
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled 
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface 
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor 
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral 

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual 
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude) El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30


